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Abstract

The basic effect of extratropical atmosphere-ocean thermal coupling is to enhance the vari-

ance of both anomalous sea surface temperatures (SST) and air temperatures (AIRT) due to

a decreased energy flux between the atmosphere and ocean, called reduced thermal damp-

ing. In this paper it is shown that rapidly-varying winds have an important effect upon the

turbulent surface heat fluxes that drive this coupling during wintertime, acting to effectively

weaken the coupling and thus partially counteracting the reduced thermal damping.

The nonlinear relationship between the rapidly-varying wind speed anomalies and SST

and AIRT anomalies results in a rapidly varying component of the surface heat fluxes. It is

shown, however, that the clear separation between the dynamical timescales of the ocean and

atmosphere allows a simple approximation of this rapidly varying flux by a stochastic process.

In many previous studies such a stochastic term is approximated by Gaussian white-noise

with fixed variance (that is, additive noise). However, as it is shown from first principles,

this stochastic heat flux term depends upon not only the fast winds but also upon the more

slowly-evolving thermal anomalies. Such state-dependent (multiplicative) noise can alter the

dynamics of atmosphere-ocean coupling because it induces an additional heat flux term (the

noise-induced drift). The noise-induced drift acts to effectively weaken coupling but also to

effectively weaken dissipation.

A key consequence of the outlined theory is that air-sea coupling includes both determin-

istic and stochastic components. The hypothesis is tested by examining daily observations

at several Ocean Weather Stations (OWSs). Two important results are found. First, mul-
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tiplicative noise at OWS P results in the coupling effectively decreasing by one third, and

about a 10% decrease in the damping. That is, while multiplicative noise acts to increase the

persistence of SST and AIRT anomalies by reducing the damping of each, it acts to reduce

persistence by weakening the coupling. At OWS P this also means that multiplicative noise

roughly doubles AIRT variability on subseasonal timescales.

Additionally, the classical stochastic view with additive noise implies that sea surface

temperature (SST) and air temperature (AIRT) anomalies obey a Gaussian distribution.

However, OWS observations reveal that joint probability distribution functions (PDFs) of

daily averaged SST and AIRT anomalies are actually significantly non-Gaussian. It is shown

that it is the state-dependent character of the rapidly-varying boundary-layer heat fluxes that

appears to be responsible for the observed non-Gaussianity of SST and AIRT anomalies. It

is concluded that the effect of state-dependent noise is crucial to understand and model

atmosphere-ocean coupling.
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1 Introduction

Coupling of the atmosphere and ocean is largely due to fluxes of momentum and heat through

their common boundary, the sea surface. Most of this exchange during the cold season is

a result of the turbulent nature of the atmospheric boundary layer; molecular momentum

and heat transfers play a very minor role in atmosphere-ocean coupling. That is, in an

hypothetical world without any sea surface winds there would be little air-sea interaction.

Wind-driven turbulent heat fluxes are commonly expressed in terms of simple bulk formulae

that depend upon the strength of the wind speed |U| and typically take the form f =

β(To − Ta)|U| (positive flux upward), where To and Ta are the sea surface temperatures

(SST) and air temperatures (AIRT) respectively, and β is a parameter including all the

constants like densities of sea-water and air, specific heats, the Bowen ratio and so forth [see

Frankignoul and Hasselmann (1977), Sura et al. (2006) or any textbook on air-sea interaction,

e.g. Kraus and Businger (1994), for details]. Variations in this flux can then drive variations

in midlatitude SST and AIRT.

Barsugli and Battisti (1998) (hereafter BB98) proposed a simple heuristic model to gauge

the effect of atmosphere-ocean thermal coupling, consisting of two linear equations for the

rate of change of the AIRT anomaly T ′a and the SST anomaly T ′o:

dT ′a
dt

= −aT ′a + bT ′o + ηa ,

dT ′o
dt

= cT ′a − dT ′o , (1)

where ηa is Gaussian white-noise representing rapidly varying weather fluctuations, the pa-

rameters a and d are the damping coefficients, and b and c are coupling coefficients. How
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surface winds drive surface fluxes was not explicitly considered in this model; rather, BB98

suggest that the coupling coefficients represent the effects of both feedback due to sur-

face fluxes (turbulent and radiative) and the dynamical response of the atmosphere to SST

anomalies. The main point of BB98 is that the atmosphere-ocean coupling enhances the

variance in both media due to a decreased energy flux between the atmosphere and the

ocean, which they termed reduced thermal damping.

BB98 can be viewed as a straightforward extension of the Frankignoul and Hasselmann

(1977) null hypothesis for SST variability, where the effect of atmospheric forcing on SST

anomalies is commonly represented by a simple stochastic model of the oceanic mixed-layer,

dT ′o
dt

= −λT ′o + η , (2)

(Hasselmann 1976; Frankignoul and Hasselmann 1977, hereafter FH77). Here, λ is a con-

stant rate coefficient representing the transfer of heat from the slowly evolving mixed-layer

heat anomaly and η is Gaussian white-noise representing heat fluxes due to rapidly varying

weather fluctuations. However, (Sura et al. 2006, hereafter SNA) showed that this implicitly

ignores the effect of rapid variations in the wind speed, |U|′, upon λ. That is, because surface

wind speeds have relatively large variability and are almost uncorrelated from day to day,

it is more appropriate (as derived from first principles) to parameterize λ as a stochastic

process in which λ = λ + λ′, where λ is constant but λ′ is white noise. This results in

the addition of a state-dependent, or multiplicative, noise −λ′T ′o to (2) that depends upon

the SST anomaly itself. As described in SNA, such multiplicative noise has two notable

consequences. First, it results in non-Gaussian probability distribution functions (PDFs)

for SSTs, even though the deterministic portion of (2) remains linear. Second, it increases
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the autocorrelation time scale of SST anomalies, even as the autocorrelation function re-

mains exponential as suggested by FH77. This is a consequence of a phenomenon known

as noise-induced drift, which occurs because the time mean of the multiplicative noise term,

λ′T ′o, is not zero even though the time mean of λ′ is zero. SNA showed that their simple

modification of the FH77 paradigm compared well to observed non-Gaussian PDFs of daily

SSTs at several Ocean Weather Stations (OWSs), and using a single-column mixed-layer

ocean model suggested that most of the multiplicative noise during winter was likely due to

rapidly varying sensible and latent heat flux anomalies.

The success of the SNA multiplicative noise approach for uncoupled SST variability im-

mediately suggests that it is also relevant to the coupled problem, particularly as formulated

by BB98. For example, note that anomalies of the heat flux f can be partitioned into three

terms that depend upon the products |U|(T ′o− T ′a), |U|′(To− Ta), and |U|′(T ′o− T ′a), respec-

tively. While the first term represents deterministic coupling of AIRT and SST anomalies,

and the second term is a source of additive (that is, state-independent) noise, the third term

potentially represents multiplicative noise. Thus, we might expect that in the BB98 model,

the damping and coupling coefficients (a, b, c, d) should all contain stochastic components. As

in SNA, noise-induced drift due to fluctuations in the damping coefficients would act to in-

crease persistence of both SST and AIRT anomalies. However, as noted in a different climate

context by Sardeshmukh et al. (2001), noise-induced drift due to fluctuations in the coupling

coefficients might act to decrease persistence, acting to oppose reduced thermal damping.

Moreover, stochastic fluctuations in the coupling parameters raises the possibility that not

all air-sea coupling is necessarily deterministic, as is assumed in the BB98 framework.
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In this paper we study the impact of rapidly-varying (on daily and sub-daily timescales)

sea surface heat fluxes on atmosphere-ocean coupling by deriving a simple coupled model

of SST and AIRT variability that accounts for rapid fluctuations in surface heat fluxes due

to rapid variability of sea surface winds. The outline of the paper is as follows. First,

because the effect of the noise-induced drift is crucial to understand the effect of fluctuation

winds on atmosphere-ocean coupling, we will explain the physical cause of the noise-induced

drift in a heuristic way (section 2). The coupled model, similar in form to BB98 except

that it includes multiplicative noise, is then introduced in section 3. In section 4 we use

inverse methods to estimate the parameters of our simple coupled model, show that the

non-Gaussianity of anomalous SST variability during the extended winter season at several

Ocean Weather Stations can be reproduced by this model, and discuss the impact of the

multiplicative noise on the power spectra of SST and AIRT. Finally, section 5 provides a

summary and discussion.

2 Noise-induced drift

To understand how multiplicative noise affects atmosphere-ocean coupling, it is useful to

first clarify how introducing stochastic components with zero mean to the coefficients in (1)

can nevertheless result in a noise-induced drift. Readers already familiar with stochastic

differential equations may wish to skip this section, whereas those interested in rigorous

math should consult one of the available textbooks (e.g., Gardiner 2004; Horsthemke and

Léfèver 1984; Kloeden and Platen 1992; Paul and Baschnagel 1999). However, to heuristically
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explain the noise-induced drift consider the simplified system

dδT

dt
= −δT (|U| + |U|′), (3)

where wind-driven heat flux acts to relax (damp) the air-sea temperature difference δT ≡

(T ′a − T ′o) towards its climatological (equilibrium) state δT = 0. The relaxation is forced by

two components of the heat flux, one driven by the mean wind speed |U|) and the other

driven by the anomalous wind speed |U|′.

For some climate problems of interest, stochastic differential equations are obtained by

approximating rapidly varying quantities as white-noise. In (3), for example, note that δT

evolves much more slowly than |U|′, so |U|′ is approximated by white-noise. In reality,

of course, the underlying systems are usually continuous in both time and space. That

is, physical processes are often smooth with at least a small degree of autocorrelation. In

our specific example this means that there exists a small time increment during which the

anomalous wind |U|′ can be considered constant (loosely speaking, this is the definition of

a Stratonovich system; see the appendix for a more detailed discussion).

Consider an ensemble of realizations for which it is assumed that the wind anomaly

forcing is Gaussian with a standard deviation σ|U|′ and PDF p(|U|′) ≡ p. We ask how

the ensemble mean trajectory that passes through the point δT0 evolves for a small time

increment where the wind speed anomaly |U|′ is approximately constant. To answer, note

that the average response to positive +|U|′ and negative −|U|′ kicks is

〈δT+〉 = δT0

∫ ∞

0
exp

(
−(|U| + |U|′p)t

)
d|U|′ , (4)

〈δT−〉 = δT0

∫ ∞

0
exp

(
−(|U|− |U|′p)t

)
d|U|′ . (5)
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Therefore, the mean response to the anomalous wind forcing will be

〈δT 〉 = δT0
1

2

∫ ∞

0

[
exp

(
−(|U| + |U|′p)t

)
+ exp

(
−(|U|− |U|′p)t

)]
d|U|′ . (6)

However, without wind forcing anomalies 〈δT 〉 evolves according to

〈δT 〉 = δT0 exp
(
−|U|t

)
. (7)

Note that in the presence of anomalous wind speeds |U|′ the average response 〈δT 〉 differs

from the corresponding response without the anomalous forcing. That is, in Eq. (6) the

responses to anomalous kicks of opposite signs (say, |U|′ = +δ|U|′ and |U|′ = −δ|U|′)

do not cancel each other. This results in a noise-induced drift: while the wind anomalies

with opposite signs cancel each other, the responses do not average to zero. The situation is

depicted in Fig. 1, where we plotted Eq. (6) (response with anomalous wind speeds; solid line)

and Eq. (7) (response without anomalous wind speeds; dashed line) for |U| ≡ 1, σ|U|′ ≡ 0.5,

and δTo ≡ 1. It can be seen that with anomalous wind speeds 〈δT 〉 decays slightly slower

than in the case with the mean wind only. That is, in this particular case (linear system

with linear multiplicative noise) the stochastic forcing effectively reduces the damping of the

system. In more general terms, the stochastic forcing induces an additional drift term, the

noise-induced drift. Note that this drift, although due to a stochastic (i.e., unpredictable)

term, results in a predictable change to the evolution of 〈δT 〉.

3 A Simple coupled model

In this section we show that rapid surface wind variability needs to be considered in any

complete model of atmosphere-ocean interactions, and that its effects can be modeled with
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multiplicative noise. Our approach is to extend the BB98 stochastic model by explicitly

considering wind induced heat flux anomalies in the context of a simple mixed-layer model.

Recall that BB98 assumed their 1-D model included the dynamical atmospheric response to

SST anomalies and their b is assumed to include the effect of this response. In the following

model derivation, coupling is due to only surface heat flux, so that all model parameters are

based on local coupling alone. However, in section 4 model parameters will be determined

from observations and thus might also include the effects of atmospheric dynamics.

3.1 The basic equations

Consider a one-dimensional thermodynamic model for the upper mixed-layer ocean coupled

to a one-dimensional mixed-layer atmosphere. That is, in the atmosphere we assume a

well mixed and horizontally homogeneous layer with temperature Ta with effective heat

capacity γa in contact with the underlying ocean. In the ocean we assume a well mixed and

horizontally homogeneous layer of constant depth and temperature To with effective heat

capacity γo in contact with the overlying atmosphere. For the sake of simplicity, all effects of

horizontal advection, humidity, and salinity are ignored. Then local heat budget equations

for AIRT Ta and SST To can be written as

γa
dTa

dt
= f(Ta, To, |U|)− λaTa + ξa ≡ Fa(Ta, To, |U|) + ξa , (8)

γo
dTo

dt
= −f(Ta, To, |U|)− λoTo + ξo ≡ Fo(Ta, To, |U|) + ξo , (9)

where f(Ta, To, |U|) is the latent and sensible heat flux through the air-sea interface which

depends on the SST To, air temperature Ta, and wind speed |U|. External forcings of Ta
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and To (that is, forcing not due explicitly to air-sea interaction) are represented by ξa and

ξo, respectively. The remaining terms −λaTa and −λoTo represent the effective damping of

each component. The bulk formula for the heat flux f is

f = β(To − Ta)|U| , (10)

where β is a constant parameter that depends upon the bulk transfer coefficients and the

inverse Bowen ratio (ratio of latent to sensible heat flux). That is, we assume that the heat

flux variability is only due to AIRT, SST, and wind speed variability. This is a reasonable

approximation in our simple framework, since cold season heat flux anomalies are strongly

related to wind speed anomalies (e.g., Ronca and Battisti 1997; Alexander and Scott 1997).

It is not a perfect approximation, of course. In particular, there are two key simplifying

assumptions in the bulk heat flux formula (10). First, the sensible and latent heat fluxes are

combined together into one term (as, e.g., Frankignoul and Hasselmann 1977), which also

removes the explicit dependence of the latter on humidity. Second, β is set to a constant,

whereas in reality β depends somewhat on the air-sea temperature difference To − Ta (the

stability) and the strength of the wind speed |U| (e.g., Large and Pond 1982). On the other

hand, SNA found for the uncoupled problem that while these simplifications can affect the

results quantitatively, they do not obscure the main points that are drawn from the derivation

using (10); that is, the fundamental nature of multiplicative noise can be established from

Eq. (10) since it contains the basic physics involved in local air-sea coupling.
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3.2 Taylor expansion

For small temperature anomalies T ′a and T ′o a Taylor expansion of Fa and Fo with respect to

Ta = T a + T ′a and To = T o + T ′o yields

γa
d(Ta + T ′a)

dt
= Fa(Ta, To, |U|) +

∂Fa

∂Ta
T ′a +

∂Fa

∂To
T ′o + ξa + ξ′a , (11)

γo
d(To + T ′o)

dt
= Fo(Ta, To, |U|) +

∂Fo

∂Ta
T ′a +

∂Fo

∂To
T ′o + ξo + ξ′o , (12)

where (Ta-dimension)

Fa(Ta, To, |U|) = β(To − Ta)|U|− λaTa ,

∂Fa

∂Ta
T ′a = (−β|U|− λa)T

′
a ,

∂Fa

∂To
T ′o = β|U|T ′o , (13)

and (To-dimension)

Fo(Ta, To, |U|) = −β(To − Ta)|U|− λaTo ,

∂Fo

∂Ta
T ′a = β|U|T ′a ,

∂Fo

∂To
T ′o = (−β|U|− λo)T

′
o . (14)

In the following we use the standard assumption that the evolution of the time mean tem-

peratures T a and T o is balanced by the time mean of the RHS of Eqs. (11) and (12). Note

that, as are all other quantities, the wind speed is split into a mean (|U|) and a deviation

from the mean (|U|′).

This results in the coupled set of equations for the anomalous temperatures T ′a and T ′o:

γa
dT ′a
dt

= β(To − Ta)|U|′ −
[
β(|U| + |U|′) + λa

]
T ′a + β(|U| + |U|′)T ′o + ξ′a , (15)
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γo
dT ′o
dt

= −β(To − Ta)|U|′ + β(|U| + |U|′)T ′a −
[
β(|U| + |U|′) + λo

]
T ′o + ξ′o . (16)

Apart from external forcing, which for simplicity from this point will be assumed to be

additive noise, perturbations in this simple model are only due to wind induced heat flux

anomalies. The effect of the wind on anomalous SST and AIRT variability is split into

two parts, due to the mean and the anomalous wind speeds. Typically, the ratio of daily

averages of mean wind speed and the anomalous wind speed is only about 2 to 1 (e.g.,

Monahan 2006b). As a consequence, a scale analysis of the flux terms (SNA) shows that the

terms depending upon |U|′ are too large to ignore.

We now assume that the wind speed anomalies |U|′ can be approximated by Gaussian

white-noise. This assumption is justifiable if daily wind speed anomalies vary much more

rapidly then SST and AIRT and if they have a distribution that is nearly Gaussian. For

example, at OWS P wind speed anomalies have a 1-day autocorrelation time-scale (Fig. 2a)

and deviations from Gaussianity are relatively small (Fig. 2b). Both SST and AIRT are

uncorrelated with wind speed, but while SST has an autocorrelation time-scale of a few

months, AIRT has only about a 3.5-day autocorrelation time-scale. Thus, while approxi-

mating wind speed as white-noise is an excellent approximation compared to SST, it may

be only a fair approximation compared to AIRT. Perhaps a better approximation of wind

speed is to represent it as red-noise with a short decorrelation time, or more simply scaling

the white-noise amplitude by the square root of the wind speed time-scale. In either case

this correction may be relatively minor, as suggested by a previous analysis of multiplicative

red-noise in a system similar to that discussed below (Sardeshmukh et al. 2003).

Employing the Gaussian white-noise assumption for wind speed, Eqs. (15) and (16)
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become stochastic differential equations (SDEs) that in matrix form are expressed as

dT′

dt
= AT′ + BM(T′)ηM + BAηA , (17)

with the 2× 2 matrices

A =





−(
β

γa
|U| + λa

γa
)

β

γa
|U|

β

γo
|U| −(

β

γo
|U| + λo

γo
)




≡





−a b

c −d



 (18)

and

BM(T′) =





σMβ

γa
(T ′o − T ′a + Π) 0

σMβ

γo
(T ′a − T ′o − Π) 0




≡





B11(T ′a, T
′
o) 0

B21(T ′a, T
′
o) 0



 . (19)

The state vector is T′ = (T ′a, T
′
o)

T , and the mean SST-AIRT temperature difference is Π =

To−Ta. There are two sources of noise: the additive stochastic noise vector ηA = (ηA
Ta

, ηA
To

)T

multiplied by an amplitude matrix BA that can have non-zero off-diagonal elements, and

multiplicative noise resulting from the matrix BM(T′) multiplied by the noise vector ηM =

(ηM
Ta

, 0)T . The variance of the wind speed anomaly |U|′ is absorbed in the constant σM [in the

manner discussed by Sardeshmukh et al. (2001)] so that ηM
Ta

has unit variance. The stochastic

components are assumed to be independent, normalized Gaussian white-noise processes.

Without multiplicative noise (BM ≡ 0), Eq. (17) is structurally equivalent to the system

used by BB98, although they assumed no white-noise forcing of SST. With multiplicative

noise, the system can result in non-Gaussian PDFs of T′. However, if Π ≡ 0, this system

is symmetric and will only result in symmetric distributions. That is, the Π ηM
Ta

terms

in BM(T′), which represent additive noise that is correlated with the multiplicative noise,

induce skewness.

Because we approximated a rapidly fluctuating quantity (|U|′) with a small but finite
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correlation time as white-noise, Eq. (17) has to be treated as a Stratonovich SDE (see the

appendix for a brief discussion of SDEs and stochastic dynamics). The corresponding noise-

induced drift [see Eq. (A.3)] is then

1

2

(
∂B11

∂T ′a

)

B11 +
1

2

(
∂B11

∂T ′o

)

B21 = −1

2

(σMβ)2

γ2
a

(T ′o − T ′a + Π)− 1

2

(σMβ)2

γaγo
(T ′o − T ′a + Π) (20)

for the T ′a-component, and

1

2

(
∂B21

∂T ′a

)

B11 +
1

2

(
∂B21

∂T ′o

)

B21 =
1

2

(σMβ)2

γaγo
(T ′o − T ′a + Π) +

1

2

(σMβ)2

γ2
o

(T ′o − T ′a + Π) (21)

for the T ′o-component. If we use the fact that the atmospheric heat capacity is much smaller

than the oceanic one (that is, γa & γo) the second terms on the right hand sides can be

neglected:

1

2

(
∂B11

∂T ′a

)

B11 +
1

2

(
∂B11

∂T ′o

)

B21 ≈ −
1

2

(σMβ)2

γ2
a

(T ′o − T ′a + Π) (22)

for the T ′a-component, and

1

2

(
∂B21

∂T ′a

)

B11 +
1

2

(
∂B21

∂T ′o

)

B21 ≈
1

2

(σMβ)2

γaγo
(T ′o − T ′a + Π) (23)

for the T ′o-component.

A summary figure of our model is shown in Fig. 3, illustrating the distinction between

air-sea interaction with mean wind only (upper panel) and air-sea interaction with mean and

fluctuating winds (lower panel). The physical set-ups are shown on the left hand sides of each

panel, while the equivalent mathematical relations are depicted on the panel’s right hand

sides. In both cases (upper and lower panels) the oceanic and atmospheric temperatures

are damped by radiative effects −λaTa and −λoTo. When only the mean wind drives heat

flux (upper panel), the heat flux coupling is ±β(To − Ta)|U|, and the evolution of SST and
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AIRT is given by the deterministic drift matrix A with parameters −a, b, c,−d. This is

depicted by the corresponding arrows: −a damps the atmosphere, b is the oceanic forcing

of the atmosphere, c is the atmospheric forcing of the ocean, and −d damps the ocean. In

the case where the heat flux is due to both the mean and fluctuating winds, the predictable

evolution of atmosphere-ocean temperatures is now given by the effective drift matrix

Ã =





−a +
1

2

(σMβ)2

γ2
a

b− 1

2

(σMβ)2

γ2
a

c− 1

2

(σMβ)2

γaγo
−d +

1

2

(σMβ)2

γaγo




≡





−ã b̃

c̃ −d̃



 . (24)

That is, the multiplicative noise results in a noise-induced drift [see Eqs. (22) and (23)]

that effectively decreases the amplitudes of the damping and coupling parameters, altering

the predictable dynamics of air-sea interaction. In particular, note that multiplicative noise

can lead to effectively reduced damping through its effect on ã and d̃, yet simultaneously

effectively weaken air-sea coupling and thus weaken the coupling-induced reduced thermal

damping proposed by BB98.

4 Parameter estimation from observations

To gauge the effect of multiplicative noise on atmosphere-ocean coupling, we next estimate

the parameters of the simple coupled model (17) from Ocean Weather Station (OWS) data.

Of all the Ocean Weather Stations, OWS P may be best suited for this purpose (Hall and

Manabe 1997; Sura et al. 2006). It has a long high-quality record, the El Niño-Southern Os-

cillation (ENSO) signal is relatively weak there (e.g., Alexander et al. 2002), and it is located
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far from strong currents. We will, therefore, in the following provide a detailed discussion

of OWS P (see Table 1) as our “prototype” for midlatitude, wintertime atmosphere-ocean

coupling. A brief discussion of results from shorter-record stations is presented at the end

of this section.

4.1 Data

Daily SST and AIRT anomalies were determined as follows. First, daily averages were

calculated from the raw 3-hourly data. Then the climatological monthly averages were

estimated. A daily climatology was constructed by linear interpolation using these monthly

averages as base points. Finally, daily anomalies were calculated by subtracting the daily

climatology from the mean daily values.

SNA have already shown that SST variability is best described by a stochastic model of

surface heat fluxes during the extended wintertime (November-April), since the anomalous

mixed-layer temperature (SST) tendency is predominantly due to the net turbulent heat

flux anomalies and not to changes in the mixed-layer depth (Alexander and Penland 1996;

Sura et al. 2006). Also, radiative flux anomalies have only a minor impact during the cold

season (Park et al. 2005; Frankignoul and Kestenare 2002). Therefore, the following analysis

is restricted to the extended winter season.
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4.2 Parameter estimation

First, the direct finite-difference technique (see appendix) is used to estimate the effective

drift of the coupled system (AIRT and SST) at OWS P; results are shown in Figs. 4a and

4b. This technique can determine either linear or non-linear drifts. However, we find that

the drift is nearly linear, suggesting that the linear approximation of Eqs. (17) and (24)

[and earlier used by Barsugli and Battisti (1998)] is a good approximation of the real system.

For OWS P the linear effective drift matrix is:

Ã =





−0.35 0.22

0.01 −0.04



 . (25)

The evolution of T ′a is strongly damped (−ã) and weakly coupled to T ′o (b̃). In the same way

the evolution of T ′o is weakly coupled to T ′a (c̃) and damped (−d̃).

The method used to estimate the multiplicative noise matrix BBT is similar to that used

to estimate the drift. However, as noted in the appendix, estimation of the multiplicative

noise matrix BBT is prone to error. The most practical way to detect the systematic error

made by using a finite time step is to change ∆t and to compare the results. Here the

method yields stable results apart from an overall constant, implying that the finite-difference

estimate of BBT does not depend sensitively on the time step ∆t. Unfortunately, because

the components of BBT vary over more than two orders of magnitude, only the largest

component (BBT )11, shown in Fig. 4c, can be determined with confidence. Note that this

term includes both additive and multiplicative noise.

Recall that in the simple model, (BBT )11 = (B11)2 [cf. Eq. (19)]. The observed (BBT )11

has a structure quite similar to (B11)2, with a pronounced minimum for T ′o−T ′a ≈ −0.7K = Π
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and a roughly quadratic increase orthogonally away from the minimum line. It is thus

reasonable to use (BBT )11 to estimate the parameters of the linear multiplicative noise

terms of the simple coupled system. First, given Eq. (19)
(
σMβ/γa

)2
can be estimated from

Fig. 4c. Next, the ratio γa/γo is given by the ratio c̃/b̃ [see Eq. (24)]. Given
(
σMβ/γa

)2
the

ratio γa/γo is then used to calculate
(
σMβ/

√
γaγo

)2
and

(
σMβ/γo

)2
. This procedure results

in the following estimates:

γa/γo ≈ 0.05 , (26)

(
σMβ/γa

)2
≈ 0.2 , (27)

(
σMβ/

√
γaγo

)2
≈ 0.01 , (28)

(
σMβ/γo

)2
≈ 0.0005 . (29)

γa/γo determined in this manner is identical to that used by BB98, which represents the

ratio of the heat capacities of a tropospheric column and wintertime oceanic mixed-layer.

The other parameters are consistent with typical values of β and wind speed variability at

OWS P. The covariance of the multiplicative noise is then

〈BMBT
M〉 =





0.48 −0.024

−0.024 0.0012



 . (30)

Given the multiplicative noise, the additive noise required to reproduce the observed

covariance structure can now be calculated from the fluctuation-dissipation relation (see

appendix):

BABT
A = −ÃC0 −C0Ã− 〈BMBT

M〉 , (31)
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where C0 is the data’s covariance matrix at lag zero, yielding

BABT
A =





0.92 0.07

0.07 0.03



 . (32)

Note that the multiplicative noise comprises about one third of the overall atmospheric noise

forcing but is an almost negligible component of SST noise forcing. Also, while the pure

additive noises of SST and AIRT have a 0.4 correlation, SST and AIRT multiplicative noises

are anticorrelated, so that overall SST and AIRT noises have only a 0.2 correlation.

Having determined the noise-induced drift, the deterministic drift is calculated as:

A =





−0.45 0.32

0.015 −0.045



 . (33)

Comparison of A and Ã suggests that the noise-induced drift reduces the effective coupling

parameters by roughly one third, and decreases the effective damping by roughly 10% for

SST and 20% for TAIR.

4.3 Testing the multiplicative white-noise model

We next test if the two assumptions of linear dynamics and the white-noise approximation

made in Eq. (17) are consistent with the observations at OWS P. For any observation T′
obs(t)

the effective drift ÃT′
obs(t) estimated from data can be used to calculate a forward time step

∆t: T′(t+∆t) = ÃT′
obs(t)∆t+T′

obs(t). If the white-noise assumption is correct the residual

r ≡ T′
obs(t + ∆t)−T′(t + ∆t) (34)

should equal the white-noise terms. Autocorrelation functions and PDFs of the residual

are shown in Fig. 5. For both AIRT and SST anomalies the autocorrelations are close to
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zero after one time step of 1 day. That is, the residuals are practically uncorrelated on the

resolved time scale, consistent with the white-noise approximation. Moreover, the PDFs of

the residuals are highly non-Gaussian, indicating that multiplicative white-noise is essential

to represent the noise in the coupled system.

Not only are the residuals uncorrelated after a day, but there is also no significant long

range correlation in Fig. 5a. This confirms that the linear model of local air-sea interaction

is a good approximation of the observed coupled thermodynamics at OWS P; that is, the

evolution of AIRT and SST is captured with the simple linear model. Note, however, that

the assumption of additive Gaussian white-noise made in the BB98 model (and also, e.g.,

Mosedale et al. 2005) appears invalid.

4.4 Probability Density Functions

In the previous subsection 4.3 we have seen that the simple coupled model reproduces the

deterministic dynamics of the observations rather well. As a hard test, we next examine if the

multiplicative noise model reproduces the observed joint PDF of AIRT and SST anomalies

at OWS P. PDFs are a useful measure to examine the dynamics of stochastic systems.

In particular, deviations from Gaussianity, or anomalous statistics, can shed light on the

underlying dynamics (e.g., Peinke et al. 2004; Sura et al. 2005). To calculate the joint

PDFs of AIRT and SST anomalies we use a parametric method where the parameters of

the distribution are determined by a Maximum Likelihood Estimate (MLE). The parametric

distribution we use is the skew-t, a skewed and kurtosed alternative to the normal distribution

which is capable of adapting very closely to skewed and heavy-tailed data (Azzalini and
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Capitanio 2003; Jones and Faddy 2003; Azzalini 2005; R Development Core Team 2004).

SNA showed that the skew-t distribution does an excellent job describing the PDF of SST

anomalies by comparing a simple histogram to the skew-t estimate. We did the same for the

joint PDFs and found that the skew-t distribution captures the structure of the histograms

very well.

The joint PDF anomalies (deviations from Gaussianity) of our simple model are shown in

Fig. 6a, whereas the observed joint PDF anomalies are shown in Fig. 6b. Here we normalized

the anomaly timeseries to have zero means and unit variances to make the comparison of

the PDFs easier to view.

The basic non-Gaussian structures and their amplitudes are the same in both the model

and the observations. The joint PDF is stronger than Gaussian around the origin, has weak

flanks on both sides of the peak (weaker for negative AIRT anomalies than for positive

ones), and has heavy tails (not well seen here because of the contour levels used). The

maxima of both the modeled and observed PDF anomalies lie shiftted into the positive

AIRT-plane, consistent with the effect of the mean air-sea temperature difference in the

multiplicative noise. These results are reasonably robust, to factor of two variations in

the parameters (26-29). The main difference between the model and observations is in the

positive AIRT half-plane, where there is a slight mismatch of the PDF anomaly’s orientation

and amplitude. This mismatch may be due to the simplicity of the model; for example,

the stability dependence of the bulk flux parameter β was neglected, but in reality the

value should be different for Ta > To and Ta < To (e.g., Large and Pond 1982, see also the

discussion of the model results in SNA). Still, given the simplicity of the model the agreement
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of the simulated and observed joint PDFs in Fig. 6 is remarkably good. The most important

point is that the effective deterministic drift of our model is linear, and that parameterizing

state-dependent rapidly-varying heat flux with multiplicative noise can explain the observed

non-Gaussian statistics.

4.5 Spectra

The impact of multiplicative noise upon the variability of AIRT and SST anomalies is demon-

strated by numerically integrating two different coupled stochastic models, with and without

multiplicative noise. To do so, we integrate (17) forwards for 106 days (the “multiplicative

noise model”), and then repeat the calculations by removing the multiplicative noise term

(e.g., BM ≡ 0; the “additive noise model”). The crucial difference is that while both model

runs have the same deterministic dynamics, the additive noise model does not have the

noise-induced drift. In addition, the overall variance of modeled anomalous AIRT and SST

variability is reduced in the additive noise model because the strength of the noise forcing

itself is reduced. More precisely, the observed covariance structure of AIRT and SST vari-

ability is not conserved in the additive noise model. This experiment visualizes the bias one

would get if a coupled model were forced with winds that have no variability at all. Note that

the additive noise model does not actually contain all the additive noise, since the portion

of the additive noise due to wind variability is also removed.

The spectra for this set of model runs are shown in Fig. 7, for AIRT (top) and SST

(bottom). The spectra of the additive noise model are indicated by the dashed lines, and the

spectra of the full multiplicative noise model are indicated by the solid lines. Consistent with
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the amplitude of the noise-induced drift found in section 4.2, the removal of the multiplicative

noise has a much larger impact on the AIRT spectrum than the SST spectrum. AIRT

variance decreases by almost 40%, with most of this impact evident on the subseasonal

timescale, where variance decreases by half and the peak in the spectrum shifts to shorter

periods. Conversely, the effect of multiplicative noise is much less on periods of months to

years. That is, the multiplicative noise has an impact not just on the overall variance but

on the shape of the power spectrum, leading to relatively more subseasonal variability.

Multiplicative noise has two opposing effects upon SST that almost exactly cancel, leading

to little change between the two curves in Fig. 7b. First, the noise-induced drift weakens

the effective damping of SST and thus acts to increase SST variance. If only this effect is

removed, SST variance is reduced by about 10% (not shown), consistent with the results in

SNA. However, removing multiplicative noise also reduces AIRT variance, so consequently

the forcing of SST by the atmosphere is reduced. Note that the red-noise structure of the

SST spectrum is not visibly altered by the multiplicative noise.

4.6 Other Ocean Weather Stations

We repeated the analysis performed upon OWS P for two other stations with shorter data

records: OWS N in the North Pacific and OWS K in the North Atlantic (see Table 1 for the

exact locations). These stations are both in midlatitudes and far away from strong currents.

Therefore, we expect to see rather similar characteristics at OWS P, N, and K.

The observed joint PDFs of AIRT and SST at OWS K and N are shown on the left
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hand sides of Figs. 8a and b. Indeed, the joint PDF at OWS K (Fig. 8a, left hand side) is

quite similar to the PDF observed at OWS P (Fig. 6b), albeit with the SSTs slightly more

kurtosed and skewed. The joint PDF at OWS N (Fig. 8b, left hand side) also shows a similar

structure, but the deviation from Gaussianity is notably rotated so that the non-Gaussianity

is much stronger in the direction of the SST-axis (consistent with the marginal SST PDFs

shown in SNA).

The modeled joint PDFs of AIRT and SST at OWS K and N are shown on the right

hand sides of Figs. 8a and b. It can be seen that the simple stochastic model is able to

reproduce the joint PDF at OWS K relatively well (Fig. 8a), including the slight rotation

of the PDF relative to OWS P. In fact, all the parameters at OWS K are broadly similar to

the parameters determined at OWS P. At OWS N the model reproduces the basic structure,

but captures only some of the rotation of the observed PDF (Fig. 8b). In the model, such

clockwise rotation of the PDF anomaly occurs because of an increase in the estimated γa/γo

(≈ 0.2 at OWS N), which results in relatively more multiplicative noise forcing of SST [e.g.,

in (16)]. Although the failure of the model to completely reproduce the OWS N PDF might

be due to the difficulty of estimating parameters from the shorter data record, it seems

more likely a result of a deficiency of the model itself. Notably, the model combines latent

and sensible heat fluxes together using the Bowen ratio formulation and then parameterizes

the heat flux solely as a function of the air-sea temperature difference. Strictly speaking,

however, the latent heat flux is a function of the dewpoint as well. Since OWS N is further

south than OWS P and K, the latent heat flux there is relatively more important, and may

need to be treated separately rather than combined with sensible heat flux as in our model.
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Also, recall that the skew in this model is due to the mean stability parameter Π, which

determines the amount of additive noise correlated with the multiplicative noise in BM(T′).

For the latent heat flux, the relevant parameter is instead the difference between the mean

SST and mean dewpoint temperature. This difference is twice as large at OWS N as at

OWS P, so the fraction of correlated additive noise might be underestimated by a model

that focuses on the mean AIRT-SST difference alone.

The key point is that the multiplicative noise physics and the related non-Gaussianity

at OWS P are not unique but also appear relevant at other midlatitude stations. This adds

confidence to the ability of the model to capture the basic mechanism through which rapid

wind variability impacts air-sea thermal coupling.

5 Summary and conclusions

In this paper we investigated how air-sea thermal coupling is impacted by the presence of

rapidly varying surface winds, an effect that has generally been ignored in past studies. By

representing the rapidly-varying winds as white-noise within a bulk formulation of surface

turbulent heat fluxes, an equation for the coupled AIRT-SST system is derived that notably

includes a stochastic process depending upon the atmospheric and oceanic thermal anomalies

themselves. This state-dependent, or multiplicative, noise alters the predictable dynamics of

atmosphere-ocean coupling because it induces an additional heat flux term, the noise-induced

drift. In our model the noise-induced drift acts to effectively weaken coupling but also to

effectively weaken dissipation. For example, at OWS P the noise-induced drift results in

25



about a one-third decrease of the effective coupling parameters, and about a 10-20% decrease

of the effective damping parameters. In general, the effect of reduced thermal damping is

weakened by noise in the coupling coefficients, one possible reason why the empirically

determined effective coupling parameters for all three Ocean Weather Stations are much

weaker than those used by BB98. Thus, while multiplicative noise acts to increase the

persistence of SST and AIRT anomalies by reducing the damping of each, it simultaneously

acts to decrease the persistence by weakening the air-sea coupling.

Our analysis has focused on how rapid wind variability results in multiplicative noise in

the surface heat flux. Our model is quite simple, and in particular does not include any

possible dynamical response of the atmosphere to SST anomalies, most notably the response

of the surface wind variability itself. As SNA had previously found, explicit consideration of

the latent flux dependence upon dewpoint, and bulk coefficients dependence upon stability,

might also refine the model. Given these limitations, it is a striking result that the inclusion

of this multiplicative noise term allows our model to reproduce not only the autocorrelation

functions of SST and AIRT anomalies, but also the main non-Gaussian features of the

observed joint PDFs. Moreover, our model predicts that the multiplicative noise will be

linearly dependent upon the surface air-sea temperature difference, a result that is confirmed

by observations. This agreement with observations suggests that our model captures the

basic impact of rapid wind variability upon air-sea thermal coupling.

An important consequence of the theory outlined here is that air-sea coupling includes

both deterministic and stochastic components. That is, rapidly varying boundary-layer

winds and related heat fluxes are unpredictable on the longer dynamical time-scales of the
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ocean yet are a crucial component of atmosphere-ocean coupling, and may not be just av-

eraged away. Note that by modeling winds as ”rapid” white-noise, our analysis can not

determine the relative importance of synoptic variability of the wind field versus mesoscale

variability and wind gustiness. Still, there is clearly a significant scale interaction between the

fast wind induced heat flux variability and the slower AIRT and SST variability. This scale

interaction has implications for coupled models, as rapid variability of boundary layer winds

and related surface fluxes must be accurately simulated to correctly model not only AIRT

and SST variability but also the mean climate, which is also affected by the noise-induced

drift (e.g., Sardeshmukh et al. 2001). That is, a coupled model with incorrect atmospheric

variability (i.e., noise) might incorrectly estimate the strength of atmosphere-ocean coupling.

For example, many atmospheric models (but not all) significantly underestimate wind vari-

ability in the marine boundary layer (e.g., Gille 2005; Monahan 2006a,b). It is unclear how

a bias in wind variability (and related heat fluxes) contributes to biases found in many cou-

pled models. However, we have a powerful theory/tool at hand to systematically study this

problem. The results could guide the development of improved coupling schemes and the

implementation of stochastic parameterizations in climate models.
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Appendix A

Stochastic dynamics in a nutshell

This appendix reviews a few basic ideas of stochastic dynamics used in this paper. More

comprehensive treatments may be found in many textbooks (e.g., Gardiner 2004; Horsthemke

and Léfèver 1984; Paul and Baschnagel 1999).

Consider the dynamics of an n-dimensional system whose state vector x is governed by

the stochastic differential equation (SDE)

dx

dt
= A(x) + B(x)η (A.1)

where the vector A represents all slow processes and B(x)η, with the matrix B and the

noise vector η, represents the stochastic approximation to the fast nonlinear processes. The

stochastic components ηi are assumed to be independent Gaussian white noise processes:

〈ηi(t)〉 = 0, 〈ηi(t)ηi(t
′)〉 = δ(t− t′) (A.2)

where 〈...〉 denotes the averaging operator. The corresponding Fokker-Planck equation,

∂p(x, t)

∂t
= −

∑

i

∂

∂xi



Ai + α
∑

j,k

(
∂

∂xj
Bik

)

Bjk



 p(x, t)

+
1

2

∑

i,j

∂2

∂xi∂xj
(BBT )ijp(x, t) , (A.3)

describes the conservation of the probability density p(x, t) of the system described by the

SDE (A.1). Two different values of α yield two physically important stochastic calculi: the

Itô (α = 0) and the Stratonovich calculus (α = 1/2). On the right hand side, the first term

within square brackets describes the dynamics of the deterministic system and is called the
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deterministic drift. The second term within square brackets, which does not occur in Itô

systems (α = 0), is called the noise-induced drift. The remaining term is associated with

the diffusion of the probability density by noise.

For a detailed discussion of stochastic integration and the differences between Itô and

Stratonovich SDEs see for example Horsthemke and Léfèver (1984), Gardiner (2004), or Pen-

land (1996). The key point here is that the Stratonovich calculus is relevant for continuous

physical systems, such as the atmosphere, in which rapidly fluctuating quantities with small

but finite correlation times are approximated as white noise. Thus, simplified stochastic

models constructed from atmospheric dynamical equations may assume Stratonovich calcu-

lus. However, if instead a stochastic model is indirectly estimated from observed discrete

data, then the inferred drift will be the sum of the deterministic and the noise-induced drifts.

In this case using the Itô framework may be preferable, where now A(x) represents not just

the deterministic drift but rather this sum, or the “effective drift”.

Equations for moments of x can be obtained by multiplying the Fokker-Planck equation

(A.3) by powers of x and integrating over all x. In particular, second moments of x are given

by

d〈xxT 〉
dt

= 〈A(x)xT 〉+ 〈xAT (x)〉+ 〈B(x)BT (x)〉 . (A.4)

This equation is known as the fluctuation-dissipation relation (FDR) of the system (see e.g.,

Penland and Matrosova 1994).

In principle, the deterministic and stochastic parts of (A.3) can be determined from data

by using their statistical definitions (Siegert et al. 1998; Friedrich et al. 2000; Gradǐsek et al.
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2000; Sura and Barsugli 2002; Sura 2003; Sura and Gille 2003; Sura et al. 2006):

A(x) = lim
∆t→0

1

∆t
〈X(t + ∆t)− x〉|X(t)=x (A.5)

B(x)BT (x) = lim
∆t→0

1

∆t
〈(X(t + ∆t)− x)(X(t + ∆t)− x)T 〉|X(t)=x (A.6)

where X(t+∆t) is a solution (a single stochastic realization) of the SDE (A.1) with the initial

condition X(t) = x at time t. The data define a state space representing every observed value

of x. The effective drift and stochastic diffusion are estimated by replacing the theoretical

limit ∆t → 0 with a finite-difference approximation. In practice, estimating B(x)BT (x) from

discretely sampled data is prone to error, because Taylor expansions of stochastic terms are

proportional to
√

∆t and not proportional to ∆t as are the deterministic terms (e.g., Sura

and Barsugli 2002; Sura 2003). Note that B(x)BT (x) rather than B(x) is estimated from

data. In general it is impossible to find a unique expression for B(x) in the multivariate case

(e.g., Monahan 2004).

When A and B are known, analytical solutions of the Fokker-Planck equation (A.3) for

p(x, t) can only be found in limited cases (appendix B presents one such case). For more

general cases, numerical methods must be used. To interpret the results of the Fokker-Planck

equation, numerical integrations of the SDE (A.1) can also be performed.
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Table 1: The Ocean Weather Stations (OWSs) used for this study.

OWS Location Period
P 50◦N, 145◦ W 1949–1981
N 30◦N, 140◦ W 1946–1974
K 45◦N, 16◦ W 1949–1975
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Figure 1: Solution of Eq. 6 (response with anomalous wind speeds; solid line) and Eq. 7
(response without anomalous wind speeds; dashed line) for |U| ≡ 1, σ|U|′ ≡ 0.5, and δTo ≡ 1.
It can be seen that with anomalous wind speeds 〈δT 〉 decays slightly slower than in the
case with the mean wind only. That is, in this particular case (linear system with linear
multiplicative noise) the stochastic forcing effectively reduces the damping of the system.
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a)

b)

Figure 2: (a) Autocorrelation function and (b) PDF of wind speed anomalies (m/s) at OWS
P.
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Figure 3: A schematic drawing to illustrate the physics/mathematics of our coupled model.
We focus on the distinction between air-sea interaction with mean wind only (upper panel)
and air-sea interaction with mean and fluctuating winds (lower panel). The physical set-ups
are shown on the left hand sides of each panel, while the equivalent mathematical relations are
depicted on the panel’s right hand sides. In the case with only the mean wind the evolution
of atmosphere-ocean temperatures, given by the deterministic drift matrix with parameters
−a, b, c,−d, is visualized by the corresponding arrows: −a damps the atmosphere, b is the
oceanic forcing of the atmosphere, c is the atmospheric forcing of the ocean, and −d damps
the ocean. Most importantly, note that in case were the heat flux is due to the mean and
fluctuating winds the evolution of atmosphere-ocean temperatures, given by the effective
drift matrix with parameters −a + 1
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by the noise-induced drift. The noise effectively decreases the absolute values of the damping
and coupling parameters, altering the dynamics of air-sea interaction. See section 3 for a
detailed discussion.
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a) b)

c)

Figure 4: a-b) The effective drift A(x) estimated from AIRT and SST anomalies at OWS
P. A1 denotes the T ′a component (atmosphere) and A2 denotes the T ′o component (ocean) of
the two-dimensional system. c) (BBT )11 element of the noise matrix BBT . See section 4.2
for details.
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a)

b)

Figure 5: Autocorrelation functions (a) and PDFs (b) of the residual r ≡ T′
obs(t+∆t)−T′(t+

∆t) for air temperature anomalies (thick solid lines) an sea surface temperature anomalies
(dashed lines). Note that for both components the autocorrelation is close to zero after one
time step of 1 day, and that the residuals are highly non-Gaussian (the thin sold line in (b)
shows the related Gaussian distribution). See section 4.3 for details.
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Figure 6: a) Modeled joint PDF anomalies (deviations from Gaussianity) of AIRT and SST
anomalies with parameters for OWS P. b) Observed joint PDF anomalies (deviations from
Gaussianity) of AIRT and SST anomalies at OWS P. Here AIRT and SST anomalies are
normalized to have zero mean and unit standard deviation.
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a)

b)

Figure 7: Spectra of modeled anomalous (a) AIRT and (b) SST variability without and with
multiplicative noise for the first set of experiments (multiplicative noise turned off without
accounting for lost variance). The spectra with pure additive noise are indicated by the
dashed lines, and the spectra with multiplicative noise included are indicated by the solid
lines.
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b) OWS K (45◦ N, 16◦ W)
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a) OWS N (30◦ N, 140◦ W)
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Figure 8: Observed (left) and modeled (right) joint PDF anomalies (deviations from Gaus-
sianity) of AIRT and SST anomalies at a) OWS K, and b) OWS N. Note that while the
contour interval is the same in this plot and in Fig. 6, color shading is different for each
station. Here AIRT and SST anomalies are normalized to have zero mean and unit standard
deviation.
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